Science as Arts - My articles - Publisher - Personal site
Tuesday, 2016-12-06
My site
Site menu
Section categories
My articles [1]
Our poll
Rate my site
Total of answers: 2
Statistics

Total online: 1
Guests: 1
Users: 0
Login form
Main » Articles » My articles

Science as Arts

 

VISITORS PLEASE NOTE:
 
Dr. S. Aravamudhan while delivering a talk at the Gyan Vani Shillong Broadcast, dealt with the distinctions between "Science" and "Arts". This is documented at internet at the page URL: http://saravamudhan.tripod.com/infotech_tools/id1.html#GVTALK
 
 
 These wonderful images below, were selected from the MRS "Science as Art" competition held at recent MRS Spring and Fall Meetings. You may download these, courtesy of MRS, to use as computer desktop images, or for a slide-show screen saver.

2009 MRS SPRING MEETING "SCIENCE AS ART" WINNERS

First Place

[Download]
1st Place Winner
Adam Jakus, Georgia Institute of Technology
Pollenesian Serenity
Multiple species of bare and alumina coated pollen particle images obtained via SEM


[Download]
1st Place Winner
Blythe G. Clark (Sandia National Lab) and Dan Gianola (Forschungszentrum Karlsruhe GmbH)
Nano Spaghetti & Meatballs
Colorized and overlaid scanning electron microscope images of Spaghetti & Meatballs made out of Au and Si. The 'spaghetti' is a collection of electrodeposited Au nanowires, 100 nm in diameter, that have released from the substrate and bundled together (Thomas Cornelius – GSI Darmstadt). The 'meatballs' are Si nanoparticles, ~1.5 um in diameter, with Au nanocrystals on the surface that were grown on carbon-coated substrates using ultra-high vacuum molecular beam epitaxy (Gunther Richter – MPI Stuttgart). These images highlight some of the many varied structures that can be formed at the nanoscale.


[Download]
1st Place Winner
Nikolai Chekurov
, Helsinki University of Technology

The modern Stonehedge: Colorized SEM image of silicon nanopillar formation created by Gallium implantation and DRIE-etching.


[Download]
2nd Place Winner
Adam Steele, University of Illinois
Nano-Santa
Nano-Santa with his bag of nano-tubes. This was discovered on the surface of one of our superhydrophobic nanocomposite coatings. It has been colored slightly by image processing for artistic effect.


[Download]
2nd Place Winner
James C Weaver, University of California, Riverside
Sucker Rings of Squid Tentacles
The individual toothed sucker rings of squid tentacles (highlighted in red) provide additional gripping power during prey capture and handling. These rings comprise a nanoscale network of parallel tubular elements, as shown in the background image which significantly alter the macromechanical properties of the resulting structure.


[Download]
2nd Place Winner
Wei-Fang Su, National Taiwan University
Heavy Surf in Dark Night
The is a POM micrograph of self-assembled DEH-PPV-b-PMMA rod-coil block copolymer with 66% volume fraction of PMMA block prepared at 180oC to form the birefringent smectic phase and then cooled down to room temperature. Credit: Wei-Fang Su, Chun-Lin Lin, and Chun-Chih Ho, National Taiwan University, Taipei, Taiwan


2008 MRS FALL MEETING "SCIENCE AS ART" WINNERS

First Place

[Download]
1st Place Winner
Boaz Pokroy, Harvard University
The nano-grip
This is an SEM image (color enhanced by Photoshop) of high aspect ratio 250nm thick epoxy bristles that have self assembled and trapped a 2.5 micron diameter PS sphere.



[Download]
1st Place Winner
PaiChun Wei, National Taiwan University
Nanoflower
The crystalline wurtzite indium nitride (InN) nanoflower was synthesized via molecular beam epitaxy (MBE) processes, using pure indium and a high efficient nitrogen source, hydrazoic acid (HN3). (Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan.)


[Download]
1st Place Winner
Helia Jalili, University of Waterloo
Nano Teddy Bear

The scanning electron microscopic image (taken using a FESEM LEO 1530) shows the ZnO nanostructures on an indium oxide coated glass substrate deposited at 70oC by using a facile electrochemical deposition technique. A potentio-/galvanostat electrochemical workstation (CH Instruments 660A) was used to deposit the ZnO nanostructures by amperometry potentiostatically at -1.1 V (relative to the Ag/AgCl reference electrode) and a spiral platinum wire served as working electrode. An aqueous zinc nitrate [Zn(NO3)2.6H2O] solution was used as an electrolyte to prepare these ZnO nanostructures.


Second Place

[Download]
2nd Place Winner
A. John Hart, University of Michigan
Carbon NanoEden
Garden of Carbon NanoEden (M. de Volder, S. Tawfick, A.J. Hart)


[Download]
2nd Place Winner
Jianping Ge, University of California-Riverside
Landscape painting in microscope
A microscale china-style landscape painting of mountains and rivers, formed by monodisperse silica colloids assembled on the glass.


\

[Download]
2nd Place Winner
Matthew J. Bierman, University of Wisconsin-Madison
Two Pine Trees
These pine tree lead sulfide nanowires obtain a complicated structure because only the trunk contains a screw dislocation that causes it to twist.


2008 MRS SPRING MEETING "SCIENCE AS ART" WINNERS

First Place

[Download]
1st Place Winner
S.K. Hark, Chinese University of Hong Kong
Field of Sunflowers
Amorphous SiOx nanowire bundles have an uncanny ability to self-assemble into various shapes, including one that strikingly resembles a sunflower. In these sunflowers, highly packed bundles form the disc florets and loosely packed ones around the rim of the disc form the ray florets. The SEM image shows a field of sunflowers. The grey scale image was mapped into pseudo-colors by graphic software. The nanowires grew out of the reaction of Si and oxygen, with molten Ga and Au acting as catalysts. Each nanowire is about 10 nm in diameter and tens of micrometers in length.


[Download]
1st Place Winner
Zihong Liu, Stanford University, USA
Landscape
This is a cross-polarized light optical microphotograph of an array of organic thin-film transistors (OTFT) fabricated with newly synthesized, highly crystalline 4T-TMS organic semiconductor deposited by newly developed solution-shearing method. Besides the excellent performances these new OTFTs exhibited, this microphotograph represents itself an aesthetic landscape painting full of beauty and art: different parts of the cross polarized thin film look like lakes, lands, mountains and sunglows, while the gold electrodes of the transistors seem to be a fence between lakes and far-away mountains...


[Download]
1st Place Winner
Blythe Gore Clark, Max Planck Institute for Metals Research, Stuttgart, Germany
Inferno
Color-enhanced TEM micrograph showing twins and strain contrast in a post-compression [111] NiTi micropillar. The micropillar was produced via FIB milling and was compressed using a nanoindenter equipped with a flat punch. By creating and testing compression pillars in a range of diameters, this method allows us to study the effect of size scale on the shape memory behavior of NiTi.


Second Place

[Download]
2nd Place Winner
Violeta Navarro, Complutense University of Madrid, Spain
AFM image of a sputtered Au(001) single crystal.


[Download]
2nd Place Winner
Hui Ying Yang, Nanyang Technological University, Singapore
Color added to a ZnO nano-needle SEM image. The nano-needles looks like beautiful mountains in a Chinese painting.


[Download]
2nd Place Winner
Georff Brennecka, Sandia National Lab, USA
This image is of some contamination (probably monodisperse polystyrene spheres from a previous user) in the microscope which just happened to collect at the corner of a Ta2O5 particle. The image was collected using secondary electrons in a Hitachi S-4700 SEM and was colorized using the Gnu Image Manipulation Program (GIMP).


2007 MRS FALL MEETING "SCIENCE AS ART" IMAGES

[Download]
1st Place Winner
Nano-Explosions
Color-enhanced scanning electron micrograph of an overflowed electrodeposited magnetic nanowire array (CoFeB), where the template has been subsequently completely etched. It’s a reminder that nanoscale research can have unpredicted consequences at a high level.
Credit: Fanny Beron, École Polytechnique de Montréal, Montréal, Canada


[Download]
1st Place Winner
Bamboos for Vibration Control
Ni-Mn-Ga melt-extracted fibers with an approximate diameter of 100 µm showing a bamboo-type structure (imaged with a backscattered electron detector in an FEG-SEM). Melt-extraction is a unique and novel method to prepare single-crystalline particles for magnetic shape memory composites.
Credit: Oliver Gutfleisch, IFW Dresden, Institute of Metallic Materials, Dresden, Germany


[Download]
1st Place Winner
Dirty Dice
Self-assembled 200 micron size nickel dice, imaged using scanning electron microscopy in the lower secondary electron (LEI) mode. The dice were colorized using Adobe Photoshop.
Credit: Timothy Leong, The Johns Hopkins University, Baltimore, USA


[Download]
2nd Place Winner
Beauty of Nature
SEM image of CuInSe2 film with Cu2Se (plates) and InSe (needles) crystals on the surface.
Credit: Olga Volobujeva, Tallinn University of Technology, Tallinn, Estonia


[Download]
2nd Place Winner
Layered steps in Lanthanum Cobaltite
The picture shows a colored image of the layered steps formed inside closed pores of La0.8Ca0.2CoO3, which were revealed due to fracture of the material.
Credit: Siddhartha Pathak, Drexel University, Philadelphia, USA


[Download]
2nd Place Winner
Red Planet
Combined 3-D representation of two images taken by scanning tunneling microscopy. The land is from an STM image of one monolayer of HATNA deposited on Au(111), and the sky is from an image of THAP/Au(111) exposed to a high background pressure of cobaltocene.
Credit: Sieu Ha, Princeton University, Princeton, USA


2007 MRS SPRING MEETING "SCIENCE AS ART" IMAGES

[Download]
1st Place Winner
Gold Nanopyramids
High resolution scanning electron micrograph (SEM) of gold nanopyramids supported by silicon pedestals. The orientation-dependent optical properties of the nanoparticle arrays have revealed new insight into the interaction between light and materials at the nanoscale. These structures are also being explored in applications such as chemical and biological sensing and nanophotonics. Joel Henzie developed the large-area (>1 in. 2 covered by ~10 8 pyramids) nanofabrication techniques to create the pyramids while working in the Odom lab at Northwestern University . The results are published in J. Phys. Chem. B [Joel Henzie, Kevin L. Shuford, Eun-Soo Kwak, George C. Schatz, and Teri W. Odom, J. Phys. Chem. B ., 2006, 110 , 14028-14031].
Credit: Joel Henzie, Northwestern University


[Download]
1st Place Winner
Sunflowers
A Bouquet of Anthradithiophene

Credit: Matthew Lloyd, Cornell University


[Download]
1st Place Winner
An Early Morning Stroll into Woods
SEM Image of Tin Oxide Nanowires

Credit: Suresh Donthu, Northwestern University


[Download]
1st Place Winner
“Ancient of Days” from classical art to quantum art
A 500×500 µm photoluminescence image of “Ancient of Days” was created in porous silicon using focused helium beam writing and subsequent electrochemical etching in hydrofluoric acid. Due to quantum confinement effect, visible light emission is observed from the nanosized silicon skeleton left behind after etching. It is found that pre-irradiation with a helium beam is able to change the local resistivity of the silicon and the emission wavelength of the porous silicon formed. The higher the dose of the beam, the redder the photoluminescence wavelength becomes. Here, we see that the figure of the man is depicted in orange and his face and masculinity is highlighted by the black outline created using high dose irradiation. His left hand reaches out for a pair of compass that is rested on a red sphere, surrounded with a yellowish orange aura. Using the high resolution capability of focused ion beam writing, we are able to transform William Blake’s piece of classical art into an image consisting of finely tuned nanocrystals, which we call ‘quantum art’.
Credit: Ee Jin Teo, National University of Singapore


[Download]
2nd Place Winner
Nano-pop
This picture is showing side-view of a silicon-nanowire held between and resting on two opposite nickel electrodes. One end (right side) of the nanowire has small nickel sphere on it which makes it look like a lollipop and since here it is with nanowire we gave it a name “Nano-pop”. This picture was captured using Hitachi S-4700 FESEM while the normal to the sample was making 85 degrees angle with respect to primary electron beam of the FESEM.

Credit: Sarang Ingole, Arizona State University


[Download]
2nd Place Winner
GaAs Sea Creatures
This is an image of defects on a GaAs surface following hydride vapor phase epitaxy. The image was taken using a Nikon Optical Microscope with Nomarski contrast.

Credit: Candace Lynch, Air Force Research Laboratory


[Download]
2nd Place Winner
Pollen Dawn

This SEM image was taken from surface of a TiO2 pollen. The pollen was converted into titania chemistry by using shape-preserving gas-solid displacement reaction. The apparent grainy surface was nanocrystalline anatase. The original image was manipulated in an image editing program to add color and lighting effects.

Credit: Samuel Shian, Georgia Insitute of Technology


[Download]
2nd Place Winner
Water on a Nanostructured Gold Surface

The image is a photograph of a droplet of water sitting on a nanostructured gold surface prepared by templated electrodeposition. The colours are produced by the reflection of white light and excitation of surface plasmons on the structured surface. Surfaces of this type show strong surface enhancement for SERS of molecules adsorbed at their surface.
Credit: P. N. Bartlett, University of Southampton
Photographer: Steve Shrimpton, University of Southampton


2006 MRS Spring Meeting "Science as Art" Images

[Download]
This image was created from an SEM image of a (100) oriented titania inverse opal. The image shows the cross-section half way through a (100) plane. The inverse opal was formed by low temperature atomic layer deposition of titania within the void spaces of a polystyrene opal with a sphere diameter of 330 nm. The SEM image was acquired at 15kV at 50,000x magnification and subsequently processed with an image manipulation software.
Credit: Elton Graugnard, Georgia Institute of Technology

[Download]
Optical microscopy image of deposited platinum film under stress. The film was deposited with a thickness of 240 nm on a silicon wafer.
Credit: Sohee Kim, University of Utah

[Download]
Light microscope image of poly(3,4-ethylenedioxythiophene) grown around polystyrene latex microspheres on an ITO glass plate electrode.
Credit: Matt Meier, University of Michigan

[Download]
Highly tapered germanium nanowire 'morning star' grown from a surface imperfection, utilizing the vapor-liquid-solid mechanism on an Si (111) substrate. Imaged via field emission scanning electron microscope at a magnification of 15k, accelerating voltage of 5 kV, and imaged in plan view, normal to the (111) substrate surface.
Credit: Teresa Clement, Arizona State University

[Download]
Metal / metal oxide structures obtained by lithographic techniques. The image shows an osteoblast growing on the structured surface morphology.
Credit: J. Altmayer, S. Barth, H. Shen and S. Mathur, Leibniz-Institute of New Materials, Saarbruecken, Germany


[Download]
These structures were obtained by chemical vapor deposition of molecular precursors. This picture presents a collage of SEM images including epitaxial heterojunctions of SnO2/VOx nanowires and flower-like arrangement of SnO2 platelets which were obtained at specific parameter combinations.
Credit: S. Barth, J. Altmayer and S. Mathur, Leibniz-Institute of New Materials, Saarbruecken, Germany

[Download]
An artificially-colored scanning electron micrograph of cadmium sulfide "flowers." These "flowers" are a few microns across and are grown in a multi-stage nucleation and growth process.
Credit: Erik Spoerke and Bonnie McKenzie, Sandia National Laboratories

[Download]
Picture taken with an optical microscope at 200x magnification of a ca. 100 nm thick TiO film on a silicon substrate that is beyond the critical thickness and consequently starts to peel off from the surface.
Credit: Martin Wagner, Institute of Thin Films and Interfaces (ISG), Juelich, Germany

[Download]
SEM images of the inorganic parts of an invertebrate, colonial marine animal called a bryozoan. These images were taken for an investigation into the crystallography of the skeletal calcitic elements of this animal.
Credit: Simon R. Hall, University of Bristol

[Download]
Nickel coated polystyrene microspheres after reactive ion etching. The central polystyrene region is etched away more than the metallic nickel, resulting in the dendritic features. (Magnification 25,000x)
Credit: Jia Zhang, Suzi Deng, National University of Singapore

[Download]
Color-enhanced scanning electron micrograph of triangular molybdenum sulfide sheets thermally evaporated onto a silicon substrate. Such morphology gives rise to a large number of reactive basal edges, which show selective reactivity over the basal faces. (Magnification 17,000x) Contrast between vibrant colors and grey features imparts a nostalgic touch.
Credit: Jia Mei Soon, National University of Singapore

[Download]
Color-enhanced scanning electron micrograph of a ball cluster of molybdenum sulfide nanocones thermally evaporated onto a silicon substrate. Each cone is about 300 nm in diameter at the open end. The film morphology was observed to vary at different deposition temperatures. (Magnification 37,000x) Inspired by the classic beauty and bold simplicity of the elegant Calla Lilies.
Credit: Jia Mei Soon, National University of Singapore


2005 MRS Spring Meeting "Science as Art" Images

[Download]
Structure formed upon annealing a thin gold film on a silicon substrate. The image was enhanced using Photoshop. Imaged using a LEO 1550 scanning electron microscope (SEM). (Magnification 100,000x)
Credit: Rezina Siddique, Michael A. Carpenter, College of Nanoscale Science and Engineering, University at Albany, New York, USA

[Download]
Optical microscope image using crossed polarizers of an oriented polymer semiconductor, regioregular poly(3-hexylthiophene), film commonly used in organic field-effect transistors. Two images with magnification 5x are combined.
Credit: Tomas G. Bäcklund, Department of Physics and Center for Functional Materials, Åbo Akademi University, Turku, Finland

[Download]
A collage of self-assembled structures formed via molecular simulation from anisotropic "patchy particles." The foreground is a rendering of an icosahedron formed from nanoparticles with two attractive equatorial rings. The background is a rendering of a honeycomb lattice of nanoparticles with triangular attractive patterning.
Credit: C.R. Iacovella, Z-L. Zhang, J. Mukherjee, S.C. Glotzer, University of Michigan, Ann Arbor, Michigan, USA

[Download]
Structure formed upon annealing a thin gold film on a silicon substrate. The image was enhanced using Photoshop. This was imaged using a LEO 1550 scanning electron microscope (SEM). (Magnification 5,000x)
Credit: Rezina Siddique, Michael A. Carpenter, College of Nanoscale Science and Engineering, University at Albany, New York, USA

[Download]
Zinc dendritic structures formed by electrodeposition on Cu substrates using a mixed solution of ZnO powders and NaOH at room temperature. The Cu substrate was pretreated to form a layer of nanowires before it was used to form the Zn dendritic structures. Various forms of nanostructures can be formed by controlling the electroplating conditions. (Magnification: 1,300x)
Credit: Yihong Wu, Department of Electrical and Computer Engineering, National University of Singapore, Singapore

[Download]
Two-dimensional carbon nanostructures grown on a Ga droplet using microwave-enhanced chemical vapor deposition. The orientation of the curved nanosheets is determined by the local electrical field direction. (Magnification: 13,000x)
Credit: Yihong Wu, Department of Electrical and Computer Engineering, National University of Singapore, Singapore

[Download]
A color enhanced scanning electron micrograph of ZnO grown in aqueous solution by homogeneous precipitation. The crystal morphology of the zinc oxide was controlled by using a sequential nucleation and growth process in which simple morphology crystals were grown and then subjected to further growth in the presence of different growth modifiers. (Magnification: 15,000x)
Credit: Tom Sounart, Bonnie McKenzie, Jun Liu, and Jim Voigt, Sandia National Laboratories, Albuquerque, New Mexico, USA




Source: http://www.mrs.org/s_mrs/doc.asp?CID=1803&DID=171434
Category: My articles | Added by: aram (2009-12-03) | Author: Sankarampadi ARAVAMUDHAN
Views: 192722 | Comments: 74 | Rating: 0.0/0
Total comments: 571 2 3 4 5 6 »
57  
kik spy tool - best spy sms app for android. http://menilmontant.se/2016/10/02/kik-spy-tool-best-spy-sms-app-for-android/
spy gsm sms

mobile spy abo beenden

56  
Early in the construction phase, the decision was made to pursue LEED certification for Pioneer 360. A central consideration to LEED certification for this project was the fact that the new business center was constructed on a previously developed property in the midst of older retail and commercial building facilities. This "infill development" presented a variety of challenges unique to Pioneer 360 that were addressed throughout the construction process, not the least of which was the demolition of an 800,000 SF abandoned mall that covered much of the property.
Infill development is the use of land within a built-up area for further construction, especially as part of a community redevelopment or growth management http://tehnics.site90.com program or as part of smart growth. It focuses on the use, reuse and replacement of obsolete or underutilized buildings and sites.

55  
Grazi for maikng it nice and EZ.

54  
Maid pics:
http://prettygirls.blognet.pw/?enid
Daily updates

53  
Cheap VPS or virtual private server is the ultimate solution to costly maintenance web servers. In fact, virtual private server is more advanced than shared hosting & is more like dedicated server, but to emphasize, at a much lower cost. The low cost of virtual private server is the significant difference between shared web-site hosting and dedicated server. A slightly advanced than shared website hosting and has the features of a dedicated server, but it is way cheaper than a dedicated server. The financial advantage of using virtual private server is not the only advantage it could give to its customers or users. Explained below are the additional advantages and disadvantages of using cheap virtual private servers.

Advantages of Cheap VPS:
The first thing that you could get from your individual virtual private server is the root access to your server. It means that you can have access to the root level of the hosting server. Thus, you have the ability to put in & configure any programs you require. Additionally, you can also host a limitless number of net sites through Apache's virtual hosts & manage them efficiently. Not only this, but you can also host other services, such as a mail server, an FTP server, or any type of server you want. You may even use VPS for file storage or as a backup for all of your files. Since VPS is isolated from other sites present on the physical server, it is secured that no harmful script or application used by other webmaster, that can harm your website.

Disadvantages of Cheap VPS:
There are definite disadvantages in using cheap VPS or virtual private servers. For, you cannot get managed servers. This means that in case you have no idea how to set up & configure your own VPS, it is a huge disadvantage. This disadvantage leads us to get another disadvantage, that is, you are solely responsible of all the installation, maintenance, security measures and updates on your VPS. Thus, in the event you do not possess the high-proficiency in using the VPS to control the working of the net site, the applications used, & the server resources skillfully, you will have a major issue & your VPS becomes unmanageable. Additionally, cheap VPS hosting designs might give you a whole operating process of your own to work with, you still share hardware resources with other VPS users on the host server. Therefore, in the event you are jogging intensive programs that need high performance, you may need to make use of other technique of website hosting, such as co-location or a dedicated server.

Remember, the great features & capabilities of the dedicated server are available for pricey fees to you. So if your web-site does not need high finish performance, cheap VPS are ideal for you. They are economical, efficient and offer excellent benefits for your website. Therefore, cheap VPS or virtual private servers can be reliable, but since it on a budget plan, do not expect as much as you would from expensive VPS plans.

52  
swyfaqlrr
http://bonnysport.com/0/bbs/viewthread.php?tid=4228125&extra= ugg ムートン
http://www.cucinone.com/bbpress/topic.php?id=135584#post-142543 アグ
http://mymagic.hk/viewthread.php?tid=1341160&extra= アグ
http://www.yh28.com:8081/ask/question.php?qid=960006 ugg ムートン
http://wuxi.eda.ac.cn/bbs/viewthread.php?tid=897772&extra= UGG ブーツ

efeoggzyo
http://www.jgyuesao.com/home/space.php?uid=21447&do=blog&id=445925 ugg ムートン
http://www.tc-tak.nl/forum/index.php?topic=257012.msg276943#msg276943 ugg アグ
http://www.thepatioyujin.com/858 ugg
http://sagcpbyt.meblog.biz/article/12937354.html ugg ムートン
http://godhatesu.com/2007/08/17/overcoming-misery.aspx#AddComment ugg

51  
wsffiexru
http://sosbedbug.com/bbpress/topic.php?id=494181#post-521369 UGG ブーツ
http://awcjdutx.meblog.biz/article/12935938.html ugg ムートン
http://qasim.dk/node/902158 ugg アグ
http://discuz.zhwphp.com/viewthread.php?tid=628001&extra= ugg アグ
http://wellesleygbhs58.net/bbpress/topic.php?id=212169&replies=0#post-218030 ugg

kkjmjhezr
http://blog.arvixe.com/how-to-resend-account-validation-emails-in-elgg-1-8/ ugg
http://www.noritz-sh.com/viewthread.php?tid=795327&extra= アグ
http://Biocourse.org/index.php/User:Xuvygmfv ugg アグ
http://tjblgt.com/viewthread.php?tid=1945924&extra=page%3D1 ugg
http://otutalk.com/home/space.php?uid=51135&do=blog&id=325626 アグ

50  
eyeeparan
http://falv.zero335.com/bbs/forum.php?mod=viewthread&tid=611285&extra= ugg
http://bbs.dlbendi.com/thread-13054-1-1.html UGG ブーツ
http://fbtutor.tv/18800/facebook/facebook-view-locked-profile-pictures-5/ ugg
http://blog.travelro.co.kr/138 ugg アグ
http://jeejee.info/232 ugg

xgohaxinl
http://74.82.168.211/bbs/viewthread.php?tid=1028741&extra= アグ
http://hpazafne.meblog.biz/article/12935540.html ugg
http://www.sgcn.info/forum.php?mod=viewthread&tid=1899543&extra= ugg ムートン
http://saltillolofts.org/hoa_members/forum/topic.php?id=72395#post-73065 ugg アグ
http://www.p623.net/viewthread.php?tid=613714&extra= ugg

49  
If in the Raleigh Area, contact the to vast body, test strains are their being marijuana addict inside the long term. When people suffer through the advanced stages diseases believe hour other Tree the pain associated with various conditions. http://vapemonster.com/vaporizer-chart There are companies, such as www.MedicalMarijuanaCardCo.com, to $400, depending on the number of patients served. Marijuana arrests remove criminals from the streets using get that much needed to have they offer you medical treatment. Medical cannabis has been shown to have established effects legal this this outlines the dire need for states in the U.S.

48  
good!

1-10 11-20 21-30 31-40 41-50 51-57
Name *:
Email *:
Code *:
Search
Site friends
  • Create your own site
  • Copyright MyCorp © 2016
    Create a free website with uCoz